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Abstract: Hidden Markov models are widely applying in data classification. They are using in 

many areas where 1D data are processing. In the case of 2D data, appear some problems with 

applying 2D HMM. This paper describe the important limitations of HMM when we have to 

processing two dimensional data. 
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1.Introduction 

Hidden Markov models are widely applying in data classification. They are using in speech 

recognition, character recognition, 2-D shape classification, biological sequence analysis, 

financial data processing, texture analysis, face recognition, etc. This widely applying HMM 

is result of  its effectiveness. When we work with one dimensional data, we have good tools 

and solution for this. But when we process two dimensional data, we should apply two 

dimensional HMM. There is problems, because there aren’t good and efficient solution of 

three basic problems of 2D HMM [1, 2]: 

1. Given observation O={O1,…,OT} and model  = ( A, B,  ); efficiently compute P(O| ): 

- Hidden states complicate the evaluation 

- Given two models 1 and 2, this can be used to choose the better one. 

2. Given observation O={O1,…,OT} and model  = ( A, B,  ) find  the optimal state sequence 

q = (q1, q2,…, qT ): 

- Optimality criterion has to be decided (e.g. maximum likelihood) 

- “Explanation” for the data. 

3. Given O={O1,…,OT}; estimate model parameters  = ( A, B,  ) that maximize P(O| ). 

 

2. Classic HMM 

HMM is used to the identification process. A HMM is a double stochastic process with 

underlying stochastic process that is not observable (hidden), but can be observed through 

another set of stochastic processes that produce a sequence of observation. Let O={O1,…,OT} 
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be the sequence of observation of feature vectors, where T is the total number of feature 

vectors in the sequence. The statistical parameters of the model may be defined as follows [3]. 

 The number of states of the model, N (Fig.1) 

 The transition probabilities of the underlying Markov chain, A={aij} 1 i,j N where 

aij is the probability of transition from state i to state j subject to the constraint 
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
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j ija
1

1 

 The observation probabilities, B={bj(OT)}, 1 j  N, 1 t T which represents the 

probability of the tth observation conditioned on the jth state. 

 The initial probability vector,  = {i} 1 i N. 

 

Fig.1. One-dimensional HMM [7] 

 

Hence, the HMM requires three probability measures to be defined, A, B,  and the notation: 

 = ( A, B,  ) is often used to indicate the set of parameters of the model.  

The parameters of the model are generated at random at the beginning. Then they are 

estimated with Baum-Welch algorithm, which is based on the Forward-Backward algorithm. 

Second way to estimate of parameters is Viterbi algorithm, which is very similar to Forward-

Backward algorithm. The forward algorithm calculates the coefficient t(i) (probability of 

observing the partial sequence (o1,…,ot) such that state qt is i ). The backward algorithm 

calculates the coefficient t(i) (probability of observing the partial sequence (ot+1,…,oT) such 

that state qt is i ). The Baum-Welch algorithm, which computes the , can be described as 

follows [1]. 

1. Let initial model be 0 

2. Compute new  based on 0 and observation O 

3. If log ( P( O| ) – log P( O|0 ) < DELTA stop 

4. Else set 0   and goto step 2. 
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The parameters of new model  (1), based on 0 and observation O, are estimated from 

equation of Baum-Welch algorithm (Fig.2) [1], and then are recorded to the database. 

 

Fig.2. Baum-Welch algorithm [1]. 

 

Baum-Welch algorithm  (forward-backward) 

 Forward probability j(t) for rTtNj  1 oraz 12  is calculated with following 

recurrent formula: 
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Backward probability i(t) for 2  i  N – 1 and 1  t  Tr is calculated with following 

recurrent formula: 
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initial condition:    iNri aT     1  i  N 

finishing condition:       
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Problem:  

For giving observation vector O = (o1, o2,..., oT) estimation model parameters =(, A, B)  in 

order to take maximum P(O | ). 

Problem solution: 

- Estimate the parameters of the model =(, A, B) for maximum P(O | ), 

- Define (i, j)  as a probability of being in state i at time t and in the state j at time t + 1, 
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Relation in algorithm: 

- define t(i) as a probability being in state i at time t, given the observation sequence 
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  is the expected number of times state i is visited, 
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t ji  is the expected number of transition from state i to state j, 

- i = expected frequency in state i at time (t = 1) = 1(i), 

- aij = (expected number of transition from state i to state j ) / (expected number of 

transition from state i): 
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- bj(k) = (expected number of times in state j and observing symbol k) / (expected 

number of times in state j): 
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Viterbi algorithm [4, 5] (Fig.3) 

- Define (i) – the highest probability path ending in state i, 
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Algorithm:  

- Initialisation: 

   11 obi ii    1 i  N 
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- recursion: 
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- termination: 
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Fig.3. Viterbi algorithm [1]. 

 

The testing process consists of computing the probability of observation generating by 

the models saved in database and choosing this model for which the likelihood is maximum. 
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In the proposed method, probabilities are calculated separately for each of the three models 

representing parts of the face, then they are added. The face, for which the sum of probability 

is maximum, is chosen as the correct face. The probability of generating sequences of 

observations is computed from the equations (2)-(4) [1]. 
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3. Pseudo 2DHMM 

A pseudo 2D Hidden Markov models are extension of the 1D HMM. A P2DHMM consist of 

a number of superstates. The topology of superstate model is a linear model, where only self 

transition and transition to the following superstate are possible. Inside the superstates there 

are linear 1D HMM. The state sequences in the rows are independent of the state sequences of 

neighboring rows [6, 7]. 

Figure 4 shows a pseudo two dimensional hidden Markov model which consist of  four 

superstates. Each superstate contains three states one dimensional HMM.   

 

4. 2DHMM 

An extension of the HMM to work on two-dimensional data is 2D HMM (Fig.5). The 

principle of two dimensional hidden Markov models was described  in the paper [2]. A 2D 

HMM can be regarded as a combination of one state matrix and one observation matrix, 

where transition between states take place according to a 2D Markovian probability and each 

observation is generated independently by the corresponding state at the same matrix position. 

It was noted that the complexity of estimating the parameters of a 2D HMMs or using them to 

perform maximum a posteriori classification is exponential in the size of data. Similar to 1D 

HMM, the most important thing for 2D HMMs is also to solve the three basic problems, 

namely, probability evolution, optimal state matrix and parameters estimation. Li Yujian in 

[2] proposed some analytic solution of this problems. But this solution has some 

disadvantages. First, the computation of parameters and probability are very complexity [8]. 

Second, This solution can be applying only for left-right type of HMM. And third, we can use 
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only small size of HMM. 2D HMM is still limited by the computational power of the 

machine.  

 

  

Fig.4. Pseudo 2D-HMM [6]. 

 

 

Fig.5. 2D Markovian transitions among states [2]. 

 



J. Bobulski, Analysis of 2D problem In HMM, Polish Journal of Environmental Studies, Vol. 17, No 4C, 
2008, str.414-417 

 

 

Conclusion 

We can applying three approach to the 2D data analysis: 

- reduce dimensionality data to 1D vector and use 1D HMM, 

- divide data to segments and use pseudo 2D HMM 

- use complexity analytic calculation in 2D HMM. 

Presented solution 2D HMM is assumption of real full 2D HMM. Therefore, is needed future 

work on two dimensional hidden Markov models. Future solution have to resolve the three 

basic problems of HMM for ergodic and larger set of states and data. 
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